Template-Based Math Word Problem Solvers with Recursive Neural Networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Better Word Representations with Recursive Neural Networks for Morphology

Vector-space word representations have been very successful in recent years at improving performance across a variety of NLP tasks. However, common to most existing work, words are regarded as independent entities without any explicit relationship among morphologically related words being modeled. As a result, rare and complex words are often poorly estimated, and all unknown words are represen...

متن کامل

A Meaning-based Statistical English Math Word Problem Solver

We introduce MeSys, a meaning-based approach to solving English math word problems (MWPs) via understanding and reasoning in this paper. It first analyzes the text, transforms both body and question parts into their corresponding logic forms, and then performs inference on them. The associated context of each quantity is represented with proposed role-tags (e.g., nsubj, verb, etc.), which provi...

متن کامل

MAWPS: A Math Word Problem Repository

Recent work across several AI subdisciplines has focused on automatically solving math word problems. In this paper we introduce MAWPS, an online repository of Math Word Problems, to provide a unified testbed to evaluate different algorithms. MAWPS allows for the automatic construction of datasets with particular characteristics, providing tools for tuning the lexical and template overlap of a ...

متن کامل

Deep Neural Solver for Math Word Problems

This paper presents a deep neural solver to automatically solve math word problems. In contrast to previous statistical learning approaches, we directly translate math word problems to equation templates using a recurrent neural network (RNN) model, without sophisticated feature engineering. We further design a hybrid model that combines the RNN model and a similarity-based retrieval model to a...

متن کامل

Dependency-based Gated Recursive Neural Network for Chinese Word Segmentation

Recently, many neural network models have been applied to Chinese word segmentation. However, such models focus more on collecting local information while long distance dependencies are not well learned. To integrate local features with long distance dependencies, we propose a dependency-based gated recursive neural network. Local features are first collected by bi-directional long short term m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33017144